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Treated herein is the vibration of isotropic Reddy plates. The plates considered are of
general polygonal shape and their edges are all simply supported. Complicating effects such
as the presence of initial stresses and a Winkler–Pasternak foundation are also considered.
It is shown herein that the vibration solution can be readily obtained from the classical
Kirchhoff plate vibration results because of the mathematical similarity of the two kinds
of problems. The mathematical analogy permits the development of an exact relationship
that links the natural frequencies of the initially stressed Reddy plates resting on a
Winkler–Pasternak foundation to the corresponding classical Kirchhoff plate solutions
without the presence of complicating effects.
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1. INTRODUCTION

The simplest plate theory is based on the Kirchhoff [1] assumptions that the normals
remain straight and normal to the deformed plate midsurface. This classical plate theory,
however, does not allow for the effect of transverse shear deformation because of the
normality assumption. The effect becomes important when considering thick plates or
when accurate vibration solutions corresponding to higher modes are to be determined.
A more refined plate theory to allow for the effect of transverse shear deformation has
been proposed by Reissner [2, 3], Hencky [4] and Mindlin [5]. This first-order shear
deformation plate theory, commonly referred to as the Mindlin plate theory, relaxes the
normality assumption by allowing the normal to have a rotation with respect to the
midsurface of the plate. Owing to the assumption, a constant shear stress results through
the plate thickness, thus violating the vanishing shear stress requirement at the free surfaces
of the plate. Mindlin [5] suggested using a shear correction factor to be multiplied to the
transverse shear moduli to compensate for this error. Further higher order theories expand
the displacement field in terms of the thickness co-ordinate up to any desired degree with
the view to better represent the kinematics and to yield better stress distributions. Also
higher-order theories do away with the need for a shear correction factor. Of these higher
order theories, the third-order plate theory proposed by Reddy [6, 7] is well received. The
Reddy plate theory suffices in capturing the kinematics and stress distributions of the plate
without thrusting into too complicated computational procedure for solutions.

In 1985, Irschik [8] derived an exact relationship between the vibration frequencies of
initially stressed, simply supported, polygonal Mindlin plates on a Winkler–Pasternak
foundation and that of the corresponding prestressed membranes. Also the studies by
Xiang et al. [9] and Wang [10, 11] showed the vibration relationship between the Mindlin

0022–460X/97/270203+10 $25.00/0/sv960916 7 1997 Academic Press Limited



. .   .204

and Kirchhoff plates. Such a relationship is useful as very accurate Mindlin solutions can
be readily obtained upon supplying the Kirchhoff solutions. The benchmark Mindlin
results obtained may be used to check the validity, convergence and accuracy of numerical
results computed from thick plate software packages.

The present paper presents an exact relationship between the natural frequencies of
Reddy plates with that of the classical Kirchhoff plates. This relationship is valid for any
general polygonal, isotropic plates with simply supported edges. The complicating effects
of initial stresses and Winkler–Pasternak foundations can also be accounted for in the
relationship. Note that for Reddy solutions with these complicating effects, one simply
needs the Kirchhoff solutions without any complicating effects to be used with the
relationship. Further references on the subject of vibrating, initially stressed plates on
Pasternak foundation may be found in the recent paper of Xiang et al. [12].

2. EQUATIONS OF MOTION OF REDDY PLATE THEORY

The Reddy third order plate theory is based on the following displacement field [6, 7]:

u(x, y, z, t)= zfx (x, y, t)−
4z3

3h2 $fx (x, y, t)+
1w0(x, y, t)

1x %, (1a)

v(x, y, z, t)= zfy (x, y, t)−
4z3

3h2 $fy (x, y, t)+
1w0(x, y, t)

1y %, (1b)

w(x, y, z, t)=w0(x, y, t), (1c)

where (u, v, w) are the displacement components along the (x, y, z) co-ordinate directions,
respectively, w0 is the transverse displacement component of a point on the plate
midsurface, (fx , fy ) are the rotations of the normals in the x and y-directions, respectively,
h is the plate thickness and t denotes time.

Based on the foregoing displacement field in equation (1), Reddy [6, 7] used a consistent
variational formulation to obtain the governing equations of motion for laminated plates.
When specialized for isotropic plates, these equations are as follows:
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where r is the mass density of the plate, vR the circular frequency of the plate, s the
uniform initial stress in the plate, 92(·)= 12(·)/1x2 + 12(·)/1y2 is the Laplacian operator, and
p the foundation interface pressure.

For the elastic foundation, one assumes the two-parameter elastic foundation model
proposed by Pasternak [13]. In addition to the well-known Winkler foundation springs,
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the Pastermak model takes into account the shear interaction between the spring elements.
This is accomplished by connecting the ends of the springs to the plate with incompressible
vertical elements that deform only by transverse shear as shown in Figure 1. The
foundation medium is assumed to be linear, homogenous and isotropic. The bonding
between the plate and the foundation is perfect and frictionless. If the effects of damping
and inertia force in the foundation are neglected, the foundation interface pressure p may
be expressed as

p= kw0 −Gb9
2w0 (5)

where k is the modulus of subgrade reaction for the foundation and Gb the shear modulus
of the subgrade. Note that by setting Gb =0, the Pasternak model becomes that of the
Winkler foundation model.

The stress-resultants based on the Reddy plate theory are given by

M�ab =Mab −0 4
3h21Pab (6)

Q�a =Qa −0 4
h21Ra (7)

with

Mxx =
4D
5 01fx

1x
+ n

1fy

1y 1−
D
5 012w0

1x2 + n
12w0

1y2 1, (8a)

Pxx =
4h2D
35 01fx

1x
+ n

1fy

1y 1−
h2D
28 012w0

1x2 + n
12w0

1y2 1; (8b)

Myy =
4D
5 0n 1fx

1x
+

1fy

1y 1−
D
5 0n 12w0

1x2 +
12w0

1y2 1, (9a)

Pyy =
4h2D
35 0n 1fx

1x
+

1fy

1y 1−
h2D
28 0n 12w0

1x2 +
12w0

1y2 1; (9b)

Mxy =01− n

2 1$4D
5 01fx

1y
+

1fy

1x 1−
D
5 02 12w0

1x 1y1%, (10a)

Figure 1. Initially stressed, simply supported, polygonal Reddy plates on a Pasternak foundation.
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where D=Eh3/[12(1− n2)] is the flexural rigidity of the plate, G=E/[2(1+ n)] the shear
modulus, E the modulus of elasticity and n Poisson’s ratio. Note that (Pxx , Pyy , Pxy ) are
the higher order moments of the Reddy theory and (Rx , Ry ) are the higher order shear
forces.

By substituting equations (2), (3), (5) into equation (4), the governing equation of motion
may be expressed as
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Here, the moment sum MR is introduced and defined by
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In view of this moment sum and the moment expressions in equations (8a), (9a) and
(10a), equation (13) may be written as
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The substitution of equations (5), (8b), (9b), (10b), (11), (12) and (14) into equation (4)
leads to
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where
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Also be substituting equation (19) into equation (17), one obtains
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In view of equation (18), equation (21) may be expressed as
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The substitution of equation (22) into equation (18) furnishes the following sixth order
governing differential equation in terms of w0:
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The governing equation (23) may be factored to give

(92 + l1)(92 + l2)(92 + l3)w0 =0, (28)
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where

l1 =−2z−Q cos 0u31+
a2

3a1
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For a simply supported polygonal Reddy plate, the deflection and the moment sum are
zero at the boundary: i.e.,

w0 =0, MR =0c92w0 =0. (35)

It can be seen from equation (28) that the governing equation of the considered Reddy
plate may be written as

(92 + li )w0 =0, where i=1, 2 or 3. (36)

3. KIRCHHOFF PLATE EQUATIONS

The equation of motion for a vibrating Kirchhoff plate is given by [14]

(94 − l2
K )wK =(92 + lK )(92 − lK )wK =0, (37)

where

l2
K =(rh/D)v2

K (38)

and the subscript K denotes quantities belonging to the Kirchhoff plate.
For a simply supported polygonal Kirchhoff plate, the deflection and the moment sum

are zero at the boundary [14]: i.e.,

wK =0 and 92wK =0 on the boundary. (39)

Since the equation (92 − lK )wK =0 produces imaginary frequencies, the vibration of the
Kirchhoff plate is thus governed by

(92 + lK )wK =0 (40)

4. FREQUENCY RELATIONSHIP

In view of the mathematical similarity of equations (35), (36), (39) and (40), it may be
deduced that Reddy plate frequency vR is related to the Kirchhoff plate frequency vK by

li = lK , where i=1, 2 or 3. (41a)

From observation, it was found that l1 is always negative which therefore is not feasible.
It was also observed that Reddy plate frequency determined from equation (41a) is smaller
when li = l2 as compared to the case when li = l3. As such, equation (41a) may now be
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Figure 2. Relationship between frequencies of Reddy plates on elastic foundation and those of corresponding
Kirchhoff plates for various foundation parameters (m̄k = kh4/D, m̄g =Gbh2/D). m̄g and m̄k values respectively: –··–,
2, 2; –·–·, 1, 2; ·····, 1, 1; - - - -, 0, 1; ——, 0, 0.

written as

l2 = lK or −2z−Q cos (u/3+2p/3)+ a2/3a1 =z(rh/D)vK . (41b)

Upon supplying the Kirchhoff plate frequencies, the foregoing exact relationship given in
equation (41b) can be used to compute the Reddy plate frequencies. The transcendental
equation (41b) may be solved using the false position method.

It can also be readily shown that the vibration frequency v̄K of Kirchhoff plate with
initial stresses and resting on a Pasternak foundation is related to the corresponding
Kirchhoff plate solution vK without these complicating effects by

v̄2
K =v2

K +(Gb − sh)vK /zrhD+ k/rh. (42)

A graphical representation of equation (41b) for any polygonal plate with simply
supported edges is given in Figure 2 without the presence of initial stresses, i.e., s=0. This
figure shows clearly the effect of the elastic foundation on the frequencies. The frequencies
increase with greater values of foundation modulus parameters (m̄k = kh4/D, m̄g =Gbh2/D).

Figure 3. Relationship between frequencies of initially stressed Reddy plates and those of corresponding
Kirchhoff plates for various stress parameters L(=sh3/D) values: –··–··, −0·4; ·····, −0·2; ——, 0·0; - - - -, 0·2;
–·–·–, 0·4.
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Figure 4. Variations of Reddy plate frequencies with respect to thickness-to-length ratio for square plates on
an elastic foundation. mg and mk values respectively: ·····, 10, 100; - - - -, 0, 100; ——, 0, 0.

The foundation effect is more pronounced for thicker plates and also for higher vibration
modes that correspond to higher frequency values. Note that both of these cases imply
that one is moving further away from the origin along the curves. It is interesting to note
that when the Kirchhoff frequency parameter vKb2zrh/D is zero, the Reddy frequency
parameter vRb2zrh/D takes on the value of zkb4/D as can be deduced from
equation (42).

On the other hand, Figure 3 shows the influence of initial stresses on the frequencies.
When the initial stresses are compressive in nature (denoted by positive signs for the stress
parameter L= sh3/D), the plate frequencies decrease as a result of a lowering of plate
stiffness. The reverse occurs when the initial stresses are tensile in nature (denoted by the

Figure 5. Variations of Reddy plate frequencies with respect to thickness-to-length ratio for right-angle
isosceles triangular plates on an elastic foundation. Key as Figure 4.
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Figure 6. Variations of Reddy plate frequencies with respect to thickness-to-length ratio for rhombic plates
on elastic foundation with skew angles of (a) 15° and (b) 45°. Key as Figure 4.

negative signs for the stress parameter). Again, the effect of initial stresses is more
pronounced for thicker plates and higher frequency modes.

The relationship given in equation (41b) may be used to develop design charts for the
vibration frequencies of simply supported, polygonal plates on Pasternak foundations.
Figures 4–6 give typical design charts for square plates, right-angle isosceles triangular
plate and rhombic plates, respectively. The charts furnish the first three frequencies of
Reddy plates for a given thickness to length ratio.

5. CONCLUDING REMARKS

An exact relationship between the natural frequencies of Reddy plates and Kirchhoff
plates has been derived. The relationship is valid for any general polygonal plates with
simply supported edges. The complicating effects of initial stress and a Winkler–Pasternak
foundation are also captured in the relationship. Once the Kirchhoff vibration solutions
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are known, the Reddy solutions may be readily calculated from this relationship. Unlike
the Mindlin–Kirchhoff relationship derived earlier by Wang [10, 11], the present
Reddy–Kirchhoff plate relationship does not need a shear correction factor. This feature
is advantageous when considering laminated plates where the shear correction factor is not
available.

The relationship may also be used as a basic form to develop approximate formulas for
the vibration frequencies of other plate shapes and boundary conditions. Modification
factors may be introduced into the relationship to adjust the solutions to within the desired
accuracy.
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